AD-AD86 192

UNCLASSIFIED

{oF|

MARYLAND UNIV COLLEGE PARK COMPUTER SCIENCE CENTER F/6 12/1
THE BEHAVIOR OF A MULTIPLICITY INDEPENDENT ROOT=FINDING SCHEME ~=ETC (L)
APR 80 6 W STEWART N00014=76~C=0391

i




P BN - . s g e
} -— -
s — —— —r
] \
N "\y . ‘I‘
- S (AN
N . .“ 1
3 .
N
1
R

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND
20742

This document
for public relecse and scle; i -
Afstribution s uslimited.

B0 ¢ 5 015




14
///
L S/
[t '7"/‘ - $14 _/

\ 9 .
Tect_mﬁisgl }(ep-t'c §90 April 1980
:_____'{.'_he :;B’ehavior of aépltiplicity /r
ki Ipdependent Root-finding ;

éc‘:hervllemrin the’Eesence Ofgimr_ . -
! Q/O"’ o \ ]
3 ’ / G. W./Stewart - c
- - 7 oY ]
g //2 /[”f" ’// / r N\\‘Aﬂ

| . ) j
3 o Abstract N— A {

King [1] and Kioustelidis (2] have proph a derivative free scheme he¢ rir e A
that permits root finding methods, such as the secant method to
preserve high order convergence when the root in question is multiple.

¥ h In this note it is shown that the scheme can fail to achieve the

maximum accuracy that is attainable at a fixed precision of computation.
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The Behavior of a Multiplicity

Independent Root-finding

Scheme in the Presence of Error
G. W. Stewart

The problem considered in this note is that of finding a

root of the equation

f(x) = 0,

where f 1is a real valued function of a real variable. For simplicity

we shall assume that f has a sufficient number of continuous derivatives

for the purposes at hand.

There are any numbey of iterations, such as Yewton's method or

*
the secant method, that converge to a zero x of £ £from sufficiently

near starting points. If x* is a simple zero of £, i.e. if f'(x*) + 0,
then many of these iterations converge superlinearly; however, if x*

is a multiple zero, the convergence is usually linear and can be quite
slow. One way of circumventing this difficulty, an approach which goes
back at least to Schrdder [3], is to replace f by a function g that
is constructed from f in such a way that x*

is a simple zero of g.

A classical choice is g = f£/£f'. Recently King [l] and Kioustelidis [2]
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have proposed the function Accession For
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*
where g and its derivatives are defined at x by continuity. It

*
is easy to show that if x 1is a zero of multiplicity p of £ then

%*
g(x) =0 and

s'(x*) =

o

*
so that x is indeed a simple zero of g.

This technique is appealing when it is used with a method like 4
the secant method, which does not require derivatives; at the cost of
one extra function evaluation per iteration it promises rapid conver-
gence, free from considerations of multiplicity. However, it is important
to realize that the technique has a hidden cost. When f 1is evaluated
with error, an iteration based on it will not get as near the zero as
a more conventional method. It is the purpose of this note to show why

this is so.

The general situation is adequately illustrated by the function

f(x) = cxp,

which has a zero of multiplicity p at zero. Suppose that in practice

we cannot evaluate f£(x) exactly but instead must work with a perturbed J

value
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E(x) = f(x) + e(x),

where the error function e(x) satisfies

le(x)| < €.

Yow in the interval
Py 1
fen?P 1P

(2) [-f—: £ ]

the value of |f(x)| is not greater than ¢. Hence the value of £
may be positive or negative at any point in the interval; i.e. any point
in (2) 1s a potential zero. Wilkinson ([4] has shown that if e(x)
is noisy, as it will be when it is due to rounding error, »then an itera-

tive method like Newton's method or the secant method will converge
uﬁcil it gets into the interval (2), after which it will behave erati-
cally.

The same considerations apply to the function g; however, we
must now consider not only how accurately £ 1s evaluated but also how
accurately the denominator in (1) is evaluated. Even if the first

function evaluation is done without error, we have for this denominator

fix +£(x0)] - £(x)

=« cfx +cxPiP - cxP +e[x +£(x)]

2,2p-1 [P +.L(¥_1l xp'l +] + elx +£(x)]
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As x approaches zero, the true value of the denominator becomes

effectively czxZP-l, and this must be larger than ¢ to insure that

it is at all accurate. In other words one should not expect further '

convergence once the interval
1 1

> T T

2 2
c c

gy b e ks

{ has been entered. For fixed ¢ and sufficiently small e, the interval

(3) 1s always larger than (2).

g T T W

A numerical experiment, performed on a Texas Instruments Program-

% mable 59 calculator, will fllustrate the above considerations. The function
F f was taken to be
g £ = (D3 = -3+ 3x-1,
|
3 which has a triple zero at one. Since the TI 59 carries thirteen decimal
i digits in its computations, if Horner's method is used to evaluate f
near one, we may expect an error on the order of 10-13. Taking ¢ = 10-13
1 and c = 1, we get for the interval (2) (appropriately translated)
i
: (4) 1 + [-0.000046, +0.000046] |,
and for (3) 1

l
1
| (5) 1 + [-0.0025, +0.0025]
|
!
i

The first interval is significatly smaller than the second.
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Table 1 shows the results of applying the secant method, starting

from xl = 1.4 and X, = 1.2, first to f and then to g. The con-

'§ vergence for f 1s slow but steady; the thirtieth iterate is just out-

side the interval (4), and at that point f evaluates exactly to zero.

On the other hand the fourth iterate with the function g 1is in the
interval (5). The iteration could not be carried further because the
denominator in (1) evaluated exactly to zero.

The conclusion is that for multiple zeros the g~iteration can

T AT R R T E T I

fail to achieve the maximum accuracy that is attainable at a fixed pre-

cision of computation. On the other hand, until the g-iteration enters

L TTETEY

its region of ineffectiveness, its behavior is quite good. In the example,
it required the f-iteration eighteen function evaluations to produce a
solution as accurate as the g-iteration produced in six. Perhaps a
reasonable compromise is to use the g-iteration until it breaks down

i
! and then, if further accuracy is required, shift to more refined techniques.
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f-

£(x)

and g-Iterations

Table 1

3 2

for

X" -3 +3x-1

Iterate
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18
19
20

27
28
29
30

f

1.4000000
1.2000000
1.1714286
1.1228346
1.0945533

1.0024305
1.0018347
1.0013850

1.0001933
1.0001485
1.0001150
1.0000478

g

1.4000000
1.2000000
0.9438925
1.0016196







